Online Data Science Training
with IBM Certification
IBM Certified Online Data Science Course with 100% Placements
Data Science ranks first among the top trending jobs on LinkedIn. The future is all about Data Science & Artificial Intelligence which is helping businesses in making better decisions, tools, and a better life.
Businesses are embracing Data Science in their every day life in order to add value to every aspect of their operations. This has led to a substantial increase in the demand for Data Scientists who are skilled in advanced technologies.
Data Science is one of the most booming sectors in 21st century. Every sector – Cancer detection, paralysis detection, fraud and risk detection in banks, behavior analysis, Industry Automation is seeing a transformation.
Therefore, be a part of this Data Science revolution with Innomatics Research Labs
Languages & Tools covered in IBM Certified Data Science








IBM Certified Data Science Webinar/Demo/Batch details
Session Type | Date & Time |
---|---|
New Batch – Weekdays (Offline) | May 11 at 10AM |
New Batch – Weekdays (Online) | May 19 at 8AM |
Webinar/Workshop (Online) | N/A |
IBM Certified Data Science Course Curriculum (Syllabus)
Module 1: Python Core and Advanced
INTRODUCTION
- What is Python?
- Why does Data Science require Python?
- Installation of Anaconda
- Understanding Jupyter Notebook
- Basic commands in Jupyter Notebook
- Understanding Python Syntax
Data Types and Data Structures
- Variables and Strings
- Lists, Sets, Tuples, and Dictionaries
Control Flow and Conditional Statements
- Conditional Operators, Arithmetic Operators, and Logical Operators
- If, Elif and Else Statements
- While Loops
- For Loops
- Nested Loops and List and Dictionary Comprehensions
Functions
- What is function and types of functions
- Code optimization and argument functions
- Scope
- Lambda Functions
- Map, Filter, and Reduce
File Handling
- Create, Read, Write files and Operations in File Handling
- Errors and Exception Handling
Class and Objects
- Create a class
- Create an object
- The __init__()
- Modifying Objects
- Object Methods
- Self
- Modify the Object Properties
- Delete Object
- Pass Statements
Module 2: Data Analysis in Python
Numpy – NUMERICAL PYTHON
- Introduction to Array
- Creation and Printing of an array
- Basic Operations in Numpy
- Indexing
- Mathematical Functions of Numpy
2. Data Manipulation with Pandas
- Series and DataFrames
- Data Importing and Exporting through Excel, CSV Files
- Data Understanding Operations
- Indexing and slicing and More filtering with Conditional Slicing
- Group by, Pivot table, and Cross Tab
- Concatenating and Merging Joining
- Descriptive Statistics
- Removing Duplicates
- String Manipulation
- Missing Data Handling
DATA VISUALIZATION
Data Visualization using Matplotlib and Pandas
- Introduction to Matplotlib
- Basic Plotting
- Properties of plotting
- About Subplots
- Line plots
- Pie chart and Bar Graph
- Histograms
- Box and Violin Plots
- Scatterplot
Case Study on Exploratory Data Analysis (EDA) and Visualizations
- What is EDA?
- Uni – Variate Analysis
- Bi-Variate Analysis
- More on Seaborn based Plotting Including Pair Plots, Catplot, Heat Maps, Count plot along with matplotlib plots.
UNSTRUCTURED DATA PROCESSING
Regular Expressions
- Structured Data and Unstructured Data
- Literals and Meta Characters
- How to Regular Expressions using Pandas?
- Inbuilt Methods
- Pattern Matching
PROJECT ON WEB SCRAPING: DATA MINING and EXPLORATORY DATA ANALYSIS
- Data Mining (WEB – SCRAPING)
This project starts completely from scratch which involves the collection of Raw Data from different sources and converting the unstructured data to a structured format to apply Machine Learning and NLP models. This project covers the main four steps of the Data Science Life Cycle which involves.- Data Collection
- Data Mining
- Data Preprocessing
- Data Visualization
Ex: Text, CSV, TSV, Excel Files, Matrices, Images
Module 3: Advanced Statistics
Data Types and Data Structures
- Statistics in Data science:
- What is Statistics?
- How is Statistics used in Data Science?
- Population and Sample
- Parameter and Statistic
- Variable and its types
Data Gathering Techniques
- Data types
- Data Collection Techniques
- Sampling Techniques:
- Convenience Sampling, Simple Random Sampling
- Stratified Sampling, Systematic Sampling, and Cluster Sampling
Descriptive Statistics
- What is Univariate and Bi Variate Analysis?
- Measures of Central Tendencies
- Measures of Dispersion
- Skewness and Kurtosis
- Box Plots and Outliers detection
- Covariance and Correlation
Probability Distribution
- Probability and Limitations
- Discrete Probability Distributions
- Bernoulli, Binomial Distribution, Poisson Distribution
- Continuous Probability Distributions
- Normal Distribution, Standard Normal Distribution
Inferential Statistics
- Sampling variability and Central Limit Theorem
- Confidence Intervals
- Hypothesis Testing
- Z-test, T-test
- Chi-Square Test
- F-Test and ANOVA
Module 4. SQL for Data Science
Introduction to Databases
- Basics of SQL
- DML, DDL, DCL, and Data Types
- Common SQL commands using SELECT, FROM, and WHERE
- Logical Operators in SQL
- SQL Joins
- INNER and OUTER joins to combine data from multiple tables
- RIGHT, LEFT joins to combine data from multiple tables
- Filtering and Sorting
- Advanced filtering using IN, OR, and NOT
- Sorting with GROUP BY and ORDER BY
- SQL Aggregations
- Common Aggregations including COUNT, SUM, MIN, and MAX
- CASE and DATE functions as well as work with NULL values
- Subqueries and Temp Tables
- Subqueries to run multiple queries together
- Temp tables to access a table with more than one query
- SQL Data Cleaning
- Perform Data Cleaning using SQL
Module 5: Machine Learning Supervised Learning
INTRODUCTION
- What Is Machine Learning?
- Supervised Versus Unsupervised Learning
- Regression Versus Classification Problems Assessing Model Accuracy
REGRESSION TECHNIQUES
Linear Regression
- Simple Linear Regression:
- Estimating the Coefficients
- Assessing the Coefficient Estimates
- R Squared and Adjusted R Squared
- MSE and RMSE
Multiple Linear Regression
- Estimating the Regression Coefficients
- OLS Assumptions
- Multicollinearity
- Feature Selection
- Gradient Descent
Evaluating the Metrics of Regression Techniques
- Homoscedasticity and Heteroscedasticity of error terms
- Residual Analysis
- Q-Q Plot
- Cook’s distance and Shapiro-Wilk Test
- Identifying the line of best fit
- Other Considerations in the Regression Model
- Qualitative Predictors
- Interaction Terms
- Non-linear Transformations of the Predictors
Polynomial Regression
- Why Polynomial Regression
- Creating polynomial linear regression
- Evaluating the metrics
Regularization Techniques
- Lasso Regularization
- Ridge Regularization
- ElasticNet Regularization
- Case Study on Linear, Multiple Linear Regression, Polynomial, Regression using Python
CAPSTONE PROJECT: A project on a use case will challenge the Data Understanding, EDA, Data Processing, and above Regression Techniques.
CLASSIFICATION TECHNIQUES
Logistic regression
- An Overview of Classification
- Difference Between Regression and classification Models.
- Why Not Linear Regression?
- Logistic Regression:
- The Logistic Model
- Estimating the Regression Coefficients and Making Predictions
- Logit and Sigmoid functions
- Setting the threshold and understanding decision boundary
- Logistic Regression for >2 Response Classes
- Evaluation Metrics for Classification Models:
- Confusion Matrix
- Accuracy and Error rate
- TPR and FPR
- Precision and Recall, F1 Score
- AUC-ROC
- Kappa Score
Naive Bayes
- Principle of Naive Bayes Classifier
- Bayes Theorem
- Terminology in Naive Bayes
- Posterior probability
- Prior probability of class
- Likelihood
- Types of Naive Bayes Classifier
- Multinomial Naive Bayes
- Bernoulli Naive Bayes and Gaussian Naive Bayes
TREE BASED MODULES
Decision Trees
- Decision Trees (Rule-Based Learning):
- Basic Terminology in Decision Tree
- Root Node and Terminal Node
- Regression Trees and Classification Trees
- Trees Versus Linear Models
- Advantages and Disadvantages of Trees
- Gini Index
- Overfitting and Pruning
- Stopping Criteria
- Accuracy Estimation using Decision Trees
Case Study: A Case Study on Decision Tree using Python
- Resampling Methods:
- Cross-Validation
- The Validation Set Approach Leave-One-Out Cross-Validation
- K-Fold Cross-Validation
- Bias-Variance Trade-O for K-Fold Cross-Validation
Ensemble Methods in Tree-Based Models
- What is Ensemble Learning?
- What is Bootstrap Aggregation Classifiers and how does it work?
Random Forest
- What is it and how does it work?
- Variable selection using Random Forest
Boosting: AdaBoost, Gradient Boosting
- What is it and how does it work?
- Hyper parameter and Pro’s and Con’s
Case Study: Ensemble Methods – Random Forest Techniques using Python
DISTANCE BASED MODULES
K Nearest Neighbors
- K-Nearest Neighbor Algorithm
- Eager Vs Lazy learners
- How does the KNN algorithm work?
- How do you decide the number of neighbors in KNN?
- Curse of Dimensionality
- Pros and Cons of KNN
- How to improve KNN performance
Case Study: A Case Study on KNN using Python
Support Vector Machines
- The Maximal Margin Classifier
- HyperPlane
- Support Vector Classifiers and Support Vector Machines
- Hard and Soft Margin Classification
- Classification with Non-linear Decision Boundaries
- Kernel Trick
- Polynomial and Radial
- Tuning Hyper parameters for SVM
- Gamma, Cost, and Epsilon
- SVMs with More than Two Classes
Case Study: A Case Study on SVM using Python
CAPSTONE PROJECT: A project on a use case will challenge the Data Understanding, EDA, Data Processing, and above Classification Techniques.
Module 6: Machine Learning Unsupervised Learning
- Why Unsupervised Learning
- How it Different from Supervised Learning
- The Challenges of Unsupervised Learning
Principal Components Analysis
- Introduction to Dimensionality Reduction and its necessity
- What Are Principal Components?
- Demonstration of 2D PCA and 3D PCA
- Eigen Values, EigenVectors, and Orthogonality
- Transforming Eigen values into a new data set
- Proportion of variance explained in PCA
Case Study: A Case Study on PCA using Python
K-Means Clustering
- Centroids and Medoids
- Deciding the optimal value of ‘K’ using Elbow Method
- Linkage Methods
Hierarchical Clustering
- Divisive and Agglomerative Clustering
- Dendrograms and their interpretation
- Applications of Clustering
- Practical Issues in Clustering
Case Study: A Case Study on clusterings using Python
Association Rules
- Market Basket Analysis
Apriori
- Metric Support/Confidence/Lift
- Improving Supervised Learning algorithms with clustering
Case Study: A Case Study on association rules using Python
CAPSTONE PROJECT: A project on a use case will challenge the Data Understanding, EDA, Data Processing, and Unsupervised algorithms.
RECOMMENDATION SYSTEMS
- What are recommendation engines?
- How does a recommendation engine work?
- Data collection
- Data storage
- Filtering the data
- Content-based filtering
- Collaborative filtering
- Cold start problem
- Matrix factorization
- Building a recommendation engine using matrix factorization
- Case Study
Module 7: Deep Learning
Introduction to Neural Networks
- Introduction to Perceptron & History of Neural networks
- Activation functions
- a)Sigmoid b)Relu c)Softmax d)Leaky Relu e)Tanh
- Gradient Descent
- Learning Rate and tuning
- Optimization functions
- Introduction to Tensorflow
- Introduction to Keras
- Backpropagation and chain rule
- Fully connected layer
- Cross entropy
- Weight Initialization
- Regularization
TensorFlow 2.0
- Introducing Google Colab
- Tensorflow basic syntax
- Tensorflow Graphs
- Tensorboard
Artificial Neural Network with Tensorflow
- Neural Network for Regression
- Neural Network for Classification
- Evaluating the ANN
- Improving and tuning the ANN
- Saving and Restoring Graphs
Module 8: Computer Vision
Working with images & CNN Building Blocks
- Working with Images_Introduction
- Working with Images – Reshaping understanding, size of image understanding pixels Digitization,
- Sampling, and Quantization
- Working with images – Filtering
- Hands-on Python Demo: Working with images
- Introduction to Convolutions
- 2D convolutions for Images
- Convolution – Backward
- Transposed Convolution and Fully Connected Layer as a Convolution
- Pooling: Max Pooling and Other pooling options
CNN Architectures and Transfer Learning
- CNN Architectures and LeNet Case Study
- Case Study: AlexNet
- Case Study: ZFNet and VGGNet
- Case Study: GoogleNet
- Case Study: ResNet
- GPU vs CPU
- Transfer Learning Principles and Practice
- Hands-on Keras Demo: SVHN Transfer learning from MNIST dataset
- Transfer learning Visualization (run package, occlusion experiment)
- Hands-on demo T-SNE
Object Detection
- CNN’s at Work – Object Detection with region proposals
- CNN’s at Work – Object Detection with Yolo and SSD
- Hands-on demo- Bounding box regressor
- #Need to do a semantic segmentation project
CNN’s at Work – Semantic Segmentation
- CNNs at Work – Semantic Segmentation
- Semantic Segmentation process
- U-Net Architecture for Semantic Segmentation
- Hands-on demo – Semantic Segmentation using U-Net
- Other variants of Convolutions
- Inception and MobileNet models
CNN’s at work- Siamese Network for Metric Learning
- Metric Learning
- Siamese Network as metric learning
- How to train a Neural Network in Siamese way
- Hands-on demo – Siamese Network
Module 9: Natural Language Processing (NLP)
Introduction to Statistical NLP Techniques
- Introduction to NLP
- Preprocessing, NLP Tokenization, stop words, normalization, Stemming and lemmatization
- Preprocessing in NLP Bag of words, TF-IDF as features
- Language model probabilistic models, n-gram model, and channel model
- Hands-on NLTK
Word Embedding
- Word2vec
- Golve
- POS Tagger
- Named Entity Recognition(NER)
- POS with NLTK
- TF-IDF with NLTK
Sequential Models
- Introduction to sequential models
- Introduction to RNN
- Introduction to LSTM
- LSTM forward pass
- LSTM backdrop through time
- Hands-on Keras LSTM
Applications
- Sentiment Analysis
- Sentence generation
- Machine translation
- Advanced LSTM structures
- Keras – machine translation
- ChatBot
Module 10: Tableau for Data Science
Tableau for Data Science
- Install Tableau for Desktop 10
- Tableau to Analyze Data
- Connect Tableau to a variety of dataset
- Analyze, Blend, Join and Calculate Data
- Tableau to Visualize Data
- Visualize Data In the form of Various Charts, Plots, and Maps
- Data Hierarchies
- Work with Data Blending in Tableau
- Work with Parameters
- Create Calculated Fields
- Adding Filters and Quick Filters
- Create Interactive Dashboards
- Adding Actions to Dashboards
What are the modes of Data Science course training?
We provide Online IBM Certified Data Science training for the individuals who are occupied with work and the person who believes in one-one learning. We teach as per the Indian Standard Timings, feasible to you, providing in-depth knowledge of Data Science. We are available round the clock on WhatsApp, emails, or calls for clarifying doubts and instance assistance, also giving lifetime access to self-paced learning.
For any queries feel free to Call/WhatsApp us on +91-9951666670 or mail at info@innomatics.in
We provide Self-paced training on IBM Certified Data Science course for the individuals who are occupied with work and wants to learn in free time. We are giving lifetime access to self-paced learning. Our Self-paced video duration has 100 – 120 Hrs with Real-time practical sessions and Assignments. We are available round the clock on WhatsApp, Emails, or Calls for clarifying doubts and instance assistance.
For any queries feel free to call/WhatsApp us on +91-9951666670 or mail at info@innomatics.in
We provide Classroom training on IBM Certified Data Science at Hyderabad for the individuals who believe hand-held training. We teach as per the Indian Standard Time (IST) with In-depth practical Knowledge on each topic in classroom training, 80 – 90 Hrs of Real-time practical training classes. There are different slots available on weekends or weekdays according to your choices. We are also available over the call or mail or direct interaction with the trainer for active learning.
For any queries feel free to call/WhatsApp us on +91-9951666670 or mail at info@innomatics.in
We provide IBM Certified Data Science training for corporates by experts, which helps businesses to strengthen and reap huge benefits. We always stay updated and provide training on real-time use cases, which bridges the gap enabling the organization to capitalize on the potential of the employees.
For any queries feel free to call/WhatsApp us on +91-9951666670 or mail at info@innomatics.in
Let’s Watch a Video Bite From Our Institute
Advantages of Online Data Science course training?
By associating with Innomatics Research Labs, you will:
- Gain comprehensive end-to-end knowledge
- Build a strong foundation in Data Science & Data Analytics
- Gain knowledge about industry-standard tools and techniques
- Enjoy a practical-oriented teaching methodology
- Gain knowledge and understanding of statistical techniques critical to Data Analysis & Analytic models
Who Can Enrol For This Online Data Science Course?
This Data Science Course is specifically ideal for people who are
- Freshers who want to start the career as we teach from the basics and gradually build up your skills.
- Individuals who are graduated and working in the Data Science technology field and looking to upgrade career.
- Analysts and Software engineers looking for a career shift in the data science stream.
Job opportunities in Data Science

Key Highlights of Online Data Science Program
20+ Industry experts from fortune 500 companies
Dedicated In-house data scientist team accessible round the clock
200+ Hours of intensive practical oriented training
Flexible Online training sessions
5+ Parallel Online Data science batches running currently on both weekdays & weekends
Backup Classes and Access to the Learning Management System (LMS)
One-to-One Mentorship and Free Technical Support
FREE Data science Internship on our projects & products
Projects and use-cases derived from businesses
30+ POCs and use cases to work, learn, and experiment
Bi-weekly Industry connects from industry experts from various sectors
Opportunity to participate in meet-ups, hackathons, and conferences
Dedicated training programs for NON-IT professionals
100% placement assistance
Globally Recognized Certification from IBM

A few reviews from our students
(Our Students saying about Data Science training)
Here are the Success Stories of our Innominions
Frequently Asked Questions (FAQs) on Online Data Science Course
Why choose an online data science course?
The best reason one could say to choose online data science course that is specially provided by innomatics is due to the flexibility of it. The online course for data science is so intuitive that you will enjoy it while doing it. Another thing is the convenience of learning at your home with the same quality that could be on-campus.
How are Innomatics verified certificates awarded?
Upon completion of the program, we will conduct the assessment, hackathons, assignments and based on the qualification in the assessment, trainees will be awarded the certification from IBM. This is a globally recognized certificate that will include over top MNCs from around the world.
What are the benefits of Innomatics self-paced Training?
Innomatics offers self-paced training to those who wants to learn at their own pace, This provides includes lifetime access to LMS where the trainees can see the backup classes, one-one sessions and queries through email. There would be an arrangement of virtual live class sessions for the trainees as well.
What do i need to do if I want to switch from self-paced training to instructor-led training?
At Innomatics, the trainee can learn based on their comfort level. One can easily switch from self-paced to online instructor-led training without any extra effort.
What is the other mode so draining available at Innomatics?
Innomatics also provide Classroom Data Science Training, Online Data Science Training and Corporate Training for the employees which can upskill the workforce.
Will there be any support provided if I need assistance on the projects?
Innomatics trainers would round-the-clock and here to provide 100% assistance for all the queries that trainee raise. We are available through email or call and can also arrange a one-one session with the trainer if needed.
Do you provide any placement assistance?
Innomatics help trainees to achieve their dreams by helping trainees finding potential recruiters, resume busking, mockup interviews and helping with the entire recruiting process.
How can I choose the best specialization?
Innomatics will provide the trainees with the options that best suit them based on their background. We would suggest the best based on the role and interests. We will suggest the below based on the roles.
Data Engineering:Software and IT Professionals
Deep Learning: Engineers, Software and IT Professionals
Natural Language Processing: Engineers, Software and IT Professionals
Business Analytics: Engineers, Managers, Marketing and Sales Professionals, Domain Expert
Business Intelligence/ Data Analytics: Engineers, Marketing and Sales Professionals, Freshers